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A Performance Comparison of Linux and a 
Lightweight Kernel



ASCI Red Hardware

• 4640 compute nodes
– Dual 333 MHz Pentium II 

Xeons
– 256 MB RAM

• 800 MB/sec bi-directional 
network links

• 20 microsecond network 
latency 

• 38x32x2 mesh topology
• Deployed in 1997



ASCI Red Storm

• 10,368 compute node 
processors (AMD Opterons
@ 2.0 GHz)

• 10 TB of DDR memory @ 
333MHz (1GB per node)

• Compute node topology:
– 27 x 16 x 24 (x, y, z)
– Mesh in x & y, torus in z

• 3 GB/s network bandwidth
• 5 microsecond network 

latency



A Lightweight Compute Node Operating System is a 
Fundamental Part of the Sandia Architecture

• It is essential for
– Maximizing CPU resources

• Reduce OS and runtime system overhead
– Maximizing memory resources

• Small memory footprint, large page support
– Maximizing network resource

• No virtual memory, physically contiguous address mapping
– Increasing reliability

• Small code base, reduced complexity
– Deterministic performance

• Repeatability
– Scalability

• OS resources should be independent of job size
• Others have realized these benefits

– nCUBE (Vertex), Cray T3 (UNICOS/mk), IBM BG/L (HPK)



ASCI Red Compute Node Software

• Puma lightweight kernel
– Follow-on to Sandia/UNM Operating System 

(SUNMOS)
– Developed for 1024-node nCUBE-2 in 1993 by 

Sandia/UNM
– Ported to 1800-node Intel Paragon in 1995 by 

Sandia/UNM
– Ported to ASCI Red in 1996 by Intel and Sandia
– Productized as “Cougar” by Intel



ASCI Red Software (cont’d)

• Cougar
– Space-shared model (not time-shared)
– Exposes all resources to applications
– Consumes less than 1% of compute node memory
– Four different execution modes for managing dual 

processors
– Portals 2.0

• High-performance message passing
• Avoid buffering and memory copies
• Supports multiple user-level libraries (MPI, Intel N/X, 

Vertex, etc.)



Cougar
• Goals

– Target scientific and engineering applications on tightly 
coupled distributed memory architectures

– Scalable to tens of thousands of processors
– Fast message passing and execution
– Small memory footprint

• Approach
– Separate policy decision from policy enforcement
– Protect applications from each other
– Let user processes manage resources
– Get out of the way



Cougar General Structure
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Q-Kernel: message passing, memory protection



Cougar Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware 
• Handles interrupts and exceptions
• Maintains hardware virtual addressing (but no 

virtual memory)
• Small, static size
• Few, well defined entry points



Cougar Process Control Thread (PCT)

• Runs in user space (but more privileged than apps)
• Customizable

– Single-tasking or multi-tasking
– Round robin or priority scheduling
– High performance, debugging, or profiling version

• Changes behavior of OS without changing the kernel
• Policy Maker

– Process loading and scheduling
– Virtual address space management
– Name Server
– Fault handling



Cougar Processor Modes

• Chosen at job launch time
• Heater mode (proc 0)

– QK/PCT and application process on system CPU
• Message co-processor mode (proc 1)

– QK/PCT on system CPU
– Application process on second CPU

• Compute co-processor mode (proc 2)
– QK/PCT and application process on system CPU
– Application co-routines on on second CPU

• Virtual node mode (proc 3)
– QK/PCT and application process on system CPU
– Second application process on second CPU



Research Goals

• Assess the performance and reliability of a 
lightweight kernel versus a traditional monolithic 
kernel

• Determine how to bring lightweight kernel 
advantages to general platforms



Current Approach

• Short-term
– Compare Cougar and Linux on ASCI/Red hardware

• Beyond that
– Figure out how best to leverage Linux or other 

open-source operating systems to achieve 
important characteristics of previous LWKs

– Provide a basis for future OS research activities



Motivation for Linux/LWK Comparison

• No direct comparison of LWK versus full-service 
OS since SUNMOS versus OSF1/AD nearly ten 
years ago

• Much has changed (improved?) since
• A direct comparison between a LWK and Linux is 

important for providing insight into what is 
important

• Platform balance is important
• Need real numbers to show people like:

<insert favorite skeptic here>



Linux on ASCI Red

• RedHat 7.2 - Linux 2.4.18
• Adapted Linux bootloader and startup code to 

work with bootmesh protocol
• Service node receives Linux kernel via bootmesh 

and root filesystem from attached SCSI disk
• Compute nodes mount root filesystem from 

service node
• Sparse compute node services

– sshd for remote access
– Enough libraries for MPI jobs to run



Linux IP Implementation for ASCI Red

• Implemented a Linux network driver for CNIC
– Interrupt-driven ring buffer
– Based on isa-skeleton.c

• Varying IP MTU from 4 KB (1 page) to 16 KB (4 
pages) showed no noticeable difference in 
bandwidth

• Bandwidth is CPU limited
– 45 MB/s for 333 Mhz processors
– 32 MB/s for 200 MHz processors

• Custom raw device achieved 310 MB/s



MPI Ping-Pong Latency



But to be fair…

• Implemented a Portals 3.2 CNIC driver in Linux
– 46 µs latency, 280 MB/s

• Not quite perfectly fair because Portals 3.2 vs. 2.0
• …but as close as we can get 



NPB 2.4 - CG



NPB 2.4 - IS



NPB 2.4 - MG



CTH Family of Codes

• Models complex multi-dimensional, multi-material 
problems characterized by large deformations 
and/or strong shocks

• Uses two-step, second-order accurate finite-
difference Eulerian solution

• Material models for equations of state, strength, 
fracture, porosity, and high explosives

• Impact, penetration, perforation, shock 
compression, high explosive initiation and 
detonation problems



CTH Steps
• Read initial restart file, one file per node
• Simulate shock wave physics

– Many nearest-neighbor communications, a few global 
reductions per time step

• Write results to restart, history, and viz files
• Performance measured in grind time

– Time to compute all calculations on a single cell for a 
single time step



CTH Performance



NPB 2.4 - EP



Issues

• Compilers and runtime
– Cougar numbers are from (old) PGI compilers
– Linux numbers are from (new) Intel compilers

• Determinism
– No variability in Cougar execution times

• Even on a loaded machine
– Significant (>5%) variability in Linux execution 

times
• Level of effort

– Maintaining LWK may be equivalent to maintaining 
a Linux driver



Conclusions

• Finally have a real apples-to-apples comparison 
(albeit granny smith to red delicious)

• Numerous issues make fair comparison hard 
(should be perfectly fair on Red Storm, but that is 
still a long time away)

• Definite evidence of limitation of Linux at scale 
(still investigating)

• Definite advantages of LWK for some apps (IS)



Future Work

• Linux 2.6
– Large page support

• Cougar
– Provide a modern set of compilers/libraries

• Broader range of applications
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